CLUSTERS OF FUNCTIONAL ABNORMALITIES PRESENT IN RETIRED CANADIAN FOOTBALL LEAGUE PLAYERS

Ethan Danielli,^{1,2,3} Bhanu Sharma,² Cameron E Nowikow,^{1,2} Michael D Noseworthy^{1,2,4,5}

¹ School of Biomedical Engineering, McMaster University, Canada;

- ² Imaging Research Centre, St. Joseph's Healthcare Hamilton, Canada;
- ³ SPARC, KITE, Toronto Rehabilitation Institute, UHN, Canada;
- ⁴ Department of Electrical and Computer Engineering, McMaster University, Canada;
- ⁵ Department of Radiology, McMaster University, Canada

CONTEXT

- Sport-related concussions are a known risk for collision sport athletes
- Cognitive, emotional, physical and sleep disturbances
- Research has utilized network connectivity analyses
- Expand on our previous work on post-concussion BOLD signal complexity decreases (Dona et al. 2017)
- Amplitude of low-frequency fluctuations (ALFF)
 - Measures the spontaneous neural activity and frequency composition of the BOLD signal in each voxel (Lowe et al. 2000; Zang et al. 2007; Zou et al. 2008; Zuo et al. 2009)

OBJECTIVES

Objectives:

- To better understand the potential lasting effects of sport-related concussions
- Use resting state functional MRI (rsfMRI) data to examine rsfMRI signal spontaneity properties in retired Canadian Football League (CFL) players

Hypothesis:

 Retired CFL players would exhibit regional clusters of abnormal amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF)

METHODS & PROCEDURES

- 18 retired CFL players (male, aged 58.78±6.10)
- 3 Tesla GE MR750 Discovery MR system and 32 channel head coil
- 62 healthy age and sex-matched control (male, aged 58.81±5.69)
- CONN was used to:
 - process the raw rsfMRI data
 - calculate ALFF and fALFF values
 - conduct a group-wise analysis
- General linear modelling and threshold free cluster enhancement (TFCE) involving 10,000 permutations to identify significantly different voxel clusters
 - family-wise error corrected p-values

RESULTS

- Significantly different clusters based on ALFF and fALFF calculations
- Decreased BOLD signal spontaneity in:
 - Deep brain structures
 - Anterior cerebellum
 - Superior occipital lobe
- Increased BOLD signal spontaneity in:
 - Exterior aspects of the entire brain
 - Posterior cerebellum

RESULTS

 Significantly different clusters consistently present in >10 subjects

KEY TAKE-AWAYS

- A history of concussions could cause functional abnormalities
- 2) Decreased in central and subcortical regions
- 3) Cerebellum had complex mixture
- 4) Future directions of research:
 - Decreased ALFF could be cognitive deficits
 - Increased ALFF could be metabolic inefficiencies
 - Exploration of specific brain regions

REFERENCES

Dona O, Noseworthy MD, DeMatteo C, Connolly JF. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI). PLOS ONE. 2017;12(1):e0169647; doi; 10.1371/journal.pone.0169647

Lowe MJ, Dzemidzic M, Lurito JT, et al. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. NeuroImage 2000;12(5):582-587; doi: 10.1006/nimg.2000.0654

Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007;29(2):83–91; doi: 10.1016/j.braindev.2006.07.002

Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Meth 2008;172(1):137-141; doi: 10.1016/j.jneumeth.2008.04.012

Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: Complex and reliable. NeuroImage 2010;49(2):1432-1445; doi: 10.1016/j.neuroimage.2009.09.03

ACKNOWLEDGEMENTS

Dr. Bhanu Sharma,

PhD

Dr. Ethan Danielli, PhD ethan.danielli@uhn.ca

Cameron E Nowikow,

MASc

Dr. Michael D Noseworthy, PhD, PEng

Juravinski Research Institute